Polynomial Modular Number Systems and the roots of their reduction polynomial in the field $\mathbb{Z} / p \mathbb{Z}$

Jérémy Marrez, Jean-Claude Bajard
UMR 7606
Laboratory of Computer Sciences, Paris 6 LIP6 Pierre and Marie Curie University

Context

Modular operations occur in several of today's public key cryptography algorithms as RSA, Diffie-Hellman key exchange and ECC.

Polynomial Modular Number System (PMNS) is introduced in 2004, allowing
> The implementation of an effective modular arithmetic, involving only additions and multiplications.

- A fast polynomial arithmetic and easy parallelization for an arbitrary p.
$>$ Algorithms more efficient than known methods such as Montgomery and Barrett, and without any division.

Number of PMNS

Construction of PMNS $B=(p, n, \gamma, \rho)_{E(X)}$ based on sparse polynomials $E(X)$, called reduction polynomials whose roots γ are the radices of this kind of positional representation.

The number of PMNS systems for an integer p
The number of suitable $E(X) \times$ The number of roots of each $E(X)$ in $\mathbb{Z} / p \mathbb{Z}$.

Problematic

> The existing theorem on PMNS only proves the existence of at least one PMNS from an integer p, for a polynomial $E(X)$ of the specific form $E(X)=X^{n}+a X+b$.
$>$ Building such systems from a given p is not trivial : one has to seek a sparse polynomial $E(X)$ satisfying the conditions of the theorem.
$>$ and find one of its roots in $\mathbb{Z} / p \mathbb{Z}$ in an exhaustive way,
$>$ Reductions during calculations are performed using tables that contain a lot of data.

Idea

We want to provide as many PMNS bases as possible for a fixed prime number p,

- to choose the most efficient systems in terms of calculation and storage.
- to use the different representations produced to mask the computations (protection against attacks as DPA)
$>$ different coding of variables from one execution to another.

Our approach

> We propose a new theorem wich proves the existence of PMNS for any kind of reduction polynomial E.
\checkmark Offers new possibilities in the choice of PMNS parameters.
> We improves the initial bound on the digits of the system.
\checkmark Allows to create more compact PMNS with a lower redundancy that initially proved.
$>$ We introduce classes of irreducible polynomials $E(X)$ with good reduction properties.
\checkmark Eligible for the role of reduction polynomial, and allowing efficient reductions.
\checkmark Allow to describe how many PMNS systems we can built from a prime p, by evaluating the number of their roots modulo p.

- We count the minimum number of PMNS we can reach
$>$ Two special cases where $E(X)$ has a specific form, then the case when $E(X)$ is irreducible, whatever its the form.

Summary

- Definitions and properties
- The new theorem of PMNS
- Classes of suitable reduction polynomials
- Number of PMNS from the roots of their reduction polynomial modulo p

Summary

- Definitions and properties
- The new theorem of PMNS
- Classes of suitable reduction polynomials
- Number of PMNS from the roots of their reduction polynomial modulo p

Classical positional number system

For β a fixed integer greater than 2 call the radix, an integer $x \in \mathbb{N}$ with $x<\beta^{m}$ is represented by a unique sequence of integers $\left(x_{i}\right)_{i=0 \ldots m-1}$ such that

$$
x=\sum_{i=0}^{m-1} x_{i} \beta^{i}
$$

$$
x_{i} \text { 's : digits, } x_{i} \in \mathbb{N}, 0 \leq x_{i}<\beta, m: \max \text { number of digits. }
$$

Polynomial representation

$>$ An integer $a<\beta^{m}$ is represented by the polynomial $A(X)=\sum_{i=0}^{m-1} a_{i} X^{i}$,
with $a_{i} \in \mathbb{N}, 0 \leq a_{i}<\beta$, satisfying $A(\beta)=a$.
The coefficients of $A(X)$ are the digits of the representation.

Modular reduction a modulo p

Idea: compute $c \equiv a \bmod p, c<\beta^{n}$, since $p<\beta^{n}$.

- An iterative approach with no division :

If $\beta^{n} \equiv \delta \quad(\bmod p)$, with $\delta \ll p, \delta<\beta^{t}, \delta$ represented by $\Delta(X)$ on at most t digits, then

$$
\begin{aligned}
\beta^{n} \equiv \delta & (\bmod p) \\
\Leftrightarrow \beta^{n}-\delta & \equiv 0 \\
\Leftrightarrow \beta^{n}-\Delta(\beta) & \equiv 0 \\
(\bmod p) & (\bmod p) .
\end{aligned}
$$

$>E(X)=X^{n}-\Delta(X)$, satisfies $E(\beta) \equiv 0 \quad(\bmod p)$
We put $c=a$, and replace β^{n} with δ modulo p in c until $c<\beta^{n}$.
$>$ Equivalent to $A(X)$ modulo $E(X)$.
$>$ The reduction modulo E returns a polynomial with at most $\operatorname{deg}(E(X))$ digits representing the same element modulo p.

The more sparse $E(X)$ is, the less computations are needed in the reduction.

Such polynomials will serve to ensure the stability of the system.

PMNS system

A Polynomial Modular Number System (PMNS) is defined by
$>$ a quadruple (p, n, γ, ρ)
$>$ a polynomial $E(X) \in \mathbb{Z}[X]$, called reduction polynomial with respect to p, such that for each integer x in $[0, p]$, there exists $\left(x_{n-1}, \ldots, x_{0}\right)$ with

$$
x \equiv \sum_{i=0}^{n-1} x_{i} \gamma^{i} \quad(\bmod p)
$$

where $x_{i} \in \mathbb{N}, 0 \leq x_{i}<\rho, 1<\gamma<p, E(\gamma) \equiv 0 \quad(\bmod p)$ and $\operatorname{deg} E=n$.

Representations of an integer

The set of representations of a in the PMNS $\mathfrak{B}=(p, n, \gamma, \rho)_{E(X)}$, denoted $a_{\mathfrak{B}}$ is define as

$$
A \in a_{\mathfrak{B}} \Longleftrightarrow\left\{\begin{array}{l}
A(\gamma) \equiv a \quad(\bmod p) \\
\operatorname{deg} A<n \\
\|A\|_{\infty}<\rho
\end{array}\right.
$$

with $\|.\|_{\infty}$ the infinity norm.

Example of PMNS

We condiser the PMNS $\mathfrak{B}=(p, n, \gamma, \rho)_{E(X)}$ with $p=31, n=3, \gamma=11$ and $\rho=4$
$>$ to represent the elements of \mathbb{Z}_{31} as vectors with 3 digits and components in \{0,1,2,3\}.

Here $E(X)=X^{3}+2$ because we remark $\gamma^{3}+2=0 \bmod 31$.

0	1	2	3	4	5	6	7
$(0,0,0)$	$(0,0,1)$	$(0,0,2)$	$(0,0,3)$	$(0,1,0)$	$(0,1,1)$	$(0,1,2)$	$(0,1,3)$
$(1,3,3)$	$(2,0,0)$	$(2,0,1)$	$(2,0,2)$	$(2,0,3)$	$(2,1,0)$	$(2,1,1)$	$(2,1,2)$
$(3,3,2)$	$(3,3,3)$						
8	9	10	11	12	13	14	15
$(0,2,0)$	$(0,2,1)$	$(0,2,2)$	$(0,2,3)$	$(0,3,0)$	$(0,3,1)$	$(0,3,2)$	$(0,3,3)$
$(2,1,3)$	$(2,2,0)$	$(2,2,1)$	$(2,2,2)$	$(2,2,3)$	$(2,3,0)$	$(2,3,1)$	$(2,3,2)$
16	17	18	19	20	21	22	23
$(1,0,0)$	$(1,0,1)$	$(1,0,2)$	$(1,0,3)$	$(1,1,0)$	$(1,1,1)$	$(1,1,2)$	$(1,1,3)$
$(2,3,3)$	$(3,0,0)$	$(3,0,1)$	$(3,0,2)$	$(3,0,3)$	$(3,1,0)$	$(3,1,1)$	$(3,1,2)$
24	25	26	27	28	29	30	
$(1,2,0)$	$(1,2,1)$	$(1,2,2)$	$(1,2,3)$	$(1,3,0)$	$(1,3,1)$	$(1,3,2)$	

Figure:The elements of \mathbb{Z}_{31} in the PMNS $B=\operatorname{MNS}(31,3,11,4)$

Summary

- Definitions and properties
- The new theorem of PMNS
- Classes of suitable reduction polynomials
- Number of PMNS from the roots of their reduction polynomial modulo p

Notations

The induced norm for an $m \times n$ matrix $\mathbf{A},\|\mathbf{A}\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right|$, where $a_{i, j}$ are the coefficients of \mathbf{A}. The i-th power of a matrix \mathbf{C} is denoted by \mathbf{C}^{i}.

The new theorem of PMNS

Theorem 1:
Let $p, n>1, E(X)$ be an irreducible monic polynomial of degree n in $\mathbb{Z}[X], \mathbf{C}$ its companion matrix and γ be a root of $E(X)$ in $\mathbb{Z} / p \mathbb{Z}$.

Then, the smallest integer $\rho_{\text {min }}$ for which $\mathfrak{B}=(p, n, \gamma, \rho)_{E(X)}$ with $\rho \geq \rho_{\text {min }}$ is a PMNS, is such that

$$
\rho_{\min } \leq p^{1 / n} s,
$$

$$
\text { where } s=\min \left\{\left\|\left(\mathbf{C}^{0}\left|\mathbf{C}^{1}\right| \cdots \mid \mathbf{C}^{n-1}\right)^{T}\right\|_{\infty},\left(\operatorname{det}\left(\sum_{i=0}^{n-1} \mathbf{C}^{i}\left(\mathbf{C}^{i}\right)^{T}\right)\right)^{1 / n}\right\}
$$

Proof

Step 1: we consider the lattice \mathfrak{L} composed of the PMNS representations of 0 in $\mathbb{Z} / p \mathbb{Z}$.

$$
\begin{aligned}
& \left(\begin{array}{ccccccc}
1 & 0 & 0 & \ldots & 0 & 0 & -\gamma^{n-1} \\
0 & 1 & 0 & \ldots & 0 & 0 & -\gamma^{n-2} \\
0 & 0 & 1 & \ldots & 0 & 0 & -\gamma^{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 & -\gamma^{2} \\
0 & 0 & 0 & \ldots & 0 & 1 & -\gamma \\
0 & 0 & 0 & \ldots & 0 & 0 & p
\end{array}\right) \\
& A_{0}(X)=p \text { and } A_{i}(X)=X^{i}-\gamma^{i} \text { for } 1 \leq i \leq n-1
\end{aligned}
$$

\mathcal{L} has a dimension n :
n linearly independent vectors $\Rightarrow \mathcal{L}$ is a full-rank lattice and $\operatorname{det}(\mathcal{L})=p$

Proof

All vectors representing in the PMNS the same element of $\mathbb{Z} / p \mathbb{Z}$ are equivalent modulo the lattice \mathcal{L}.

Figure: Elements of a PMNS representing the same integer modulo p.

Proof

Step 2 : Thanks to Minkowski's theorem ,

$$
\exists V \in \mathcal{L} \text { tel que } 0<\|V\|_{\infty} \leq \operatorname{det}(\mathcal{L})^{1 / n}=p^{1 / n}
$$

Construction of a sub-lattice $\mathfrak{L}^{\prime} \subseteq \mathfrak{L}$, of base B composed of the n vectors B_{i} with $B_{i} \in \mathbb{Z}[X] /(E)$ defined as follows

$$
B_{i}(X)=X^{i} \times V(X) \quad \bmod E(X)
$$

B is a base : the B_{i} are linearly independent. Otherwise, there exists $I \neq 0$ such that

$$
\begin{aligned}
& \sum_{i=0}^{n-1} I_{i} B_{i}(X)=0 \\
& \Leftrightarrow \sum_{i=0}^{n-1} I_{i} X^{i} V(X)=0 \quad \bmod E \\
& \Leftrightarrow L(X) V(X)=0 \quad \bmod E
\end{aligned}
$$

$\operatorname{deg}(E(X))=n$, and $L(X), V(X) \neq 0$ of degrees strictly between 0 and n : we have a factorization of $E(X)$. The irreducibility of $E(X)$ in $\mathbb{Z}[x]$ hypothesis makes this case impossible.

Proof

Étape 3 : The fundamental domain \mathcal{H} of the sub-lattice \mathfrak{L}^{\prime} is defined as follows

$$
\mathcal{H}=\left\{x \in \mathbb{R}^{n}: x=\sum_{i=0}^{n-1} x_{i} b_{i}, 0 \leq x_{i}<1\right\}
$$

Figure: Fundamental domain \mathcal{H} of \mathfrak{L}^{\prime}
We consider \mathcal{H}_{0} which intersects a half of \mathcal{H} and another half of $-\mathcal{H}$.

Figure: Domain \mathcal{H}_{0} of \mathfrak{L}^{\prime}

$$
\text { To bound } \mathcal{H}_{0} \Leftrightarrow \text { To bound } B
$$

We use the companion matrix \mathbf{C} of $E(X)$ to construct the base B.
For $E(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0}$,

$$
\begin{aligned}
\mathbf{C}:= & \left(\begin{array}{ccccc}
-a_{n-1} & -a_{n-2} & \ldots & -a_{1} & -a_{0} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right) \\
& X V(X) \bmod E(X) \Leftrightarrow V \times \mathbf{C},
\end{aligned}
$$

Then $B_{i}=V \times \mathbf{C}^{i}$.
For bounding \mathbf{B}, i.e. the quantity $\max _{B_{i}(X) \in \mathbf{B}}\left\|B_{i}\right\|_{\infty}$, we present two approaches that depend on how \mathbf{B} is built.

Proof

First method : from Minkowski's theorem, $V \in \mathfrak{L}$ such that $\|V\|_{\infty} \leq p^{1 / n}$.
We can recover the base \mathbf{B} with the $n \times n^{2}$ matrix $\mathbf{C}^{0}\left|\mathbf{C}^{1}\right| \cdots \mid \mathbf{C}^{n-1}$,

$$
\left(\mathbf{C}^{0}\left|\mathbf{C}^{1}\right| \cdots \mid \mathbf{C}^{n-1}\right)^{T} \times V^{T}=B .
$$

B is a n^{2} column vector containing the components of the n vectors of the base \mathbf{B}. To bound the $\max _{B_{i}(X) \in \mathbf{B}}\left\|B_{i}\right\|_{\infty} \Leftrightarrow$ to bound $\|B\|_{\infty}$.

The induced norm for the matrices is consistent with the infinity norm,

$$
\begin{gathered}
\|B\|_{\infty} \leq\|V\|_{\infty} \times\left\|\left(\mathbf{C}^{0}\left|\mathbf{C}^{1}\right| \cdots \mid \mathbf{C}^{n-1}\right)^{T}\right\|_{\infty} \\
\|\mathbf{B}\|_{\infty} \leq p^{1 / n} \times\left\|\left(\mathbf{C}^{0}\left|\mathbf{C}^{1}\right| \cdots \mid \mathbf{C}^{n-1}\right)^{T}\right\|_{\infty}
\end{gathered}
$$

Proof

Second method: we can extract directly the base \mathbf{B} as a n^{2} vector of the extended lattice \mathfrak{D} with base $\mathbf{D}=\mathbf{A} \times\left(\mathbf{C}^{0}\left|\mathbf{C}^{1}\right| \cdots \mid \mathbf{C}^{n-1}\right)$, where \mathbf{A} is the base of \mathfrak{L}.
\mathbf{D} is an $n \times n^{2}$ matrix, and determinant of $\operatorname{det}(\mathfrak{D})=\sqrt{\operatorname{det}\left(\mathbf{D} \times \mathbf{D}^{T}\right)}$.
From Minkowski's theorem,

$$
\|\mathbf{B}\|_{\infty} \leq\left(\sqrt{\operatorname{det}\left(\mathbf{D} \times \mathbf{D}^{T}\right)}\right)^{1 / n}
$$

We note, $\mathbf{K}=\left(\mathbf{C}^{0}\left|\mathbf{C}^{1}\right| \cdots \mid \mathbf{C}^{n-1}\right)$.
Thus $\mathbf{D}=\mathbf{A} \times \mathbf{K}$ and

$$
\operatorname{det}\left(\mathbf{D} \times \mathbf{D}^{T}\right)=\operatorname{det}(\mathbf{A}) \times \operatorname{det}\left(\mathbf{K} \times \mathbf{K}^{T}\right)
$$

and

$$
\|\mathbf{B}\|_{\infty} \leq\left(p \times \sqrt{\operatorname{det}\left(\mathbf{K} \times \mathbf{K}^{T}\right)}\right)^{1 / n}
$$

We remark that, $\mathbf{K} \times \mathbf{K}^{T}=\sum_{i=0}^{n-1} \mathbf{C}^{\mathbf{i}}\left(\mathbf{C}^{\mathbf{i}}\right)^{T}$.

Proof

Step 4: \mathcal{H}_{0} that we have bounded contains all the vectors representing in \mathfrak{B} an element of $\mathbb{Z} / p \mathbb{Z}$

Figure: Bounding of \mathcal{H}_{0}.

Système PMNS

Un système AMNS vérifiant les conditions de ce théorème d'existence est appelé Système de représentation modulaire polynomial (PMNS).

Summary

- Definitions and properties
- The new theorem of PMNS
- Classes of suitable reduction polynomials
- Number of PMNS from the roots of their reduction polynomial modulo p

Suitable reduction polynomials for PMNS

To build compact systems with an efficient arithmetic on representations, we need polynomials $E(X)$ with good reduction properties, which ensure
$>$ a reduction with a limited number of steps,
> a low bound on $\rho_{\text {min }}$ for the digits.

For these reasons, a polynomial is said suitable for reduction if

- $E(X)=X^{n}+a_{k} X^{k}+\cdots+a_{1} X+a_{0} \in \mathbb{Z}[X]$, with $n \geq 2$ and $k \leq \frac{n}{2}$
\checkmark to garantee a reduction in only two steps.
- $E(X)$ is sparse, with few non-zero coefficients, small, if possible equal to 1 .
\checkmark to ensure a small bound on $\rho_{\text {min }}$ which depends on $E(X)$

ClassCyclo(n)

For a fixed $n \geq 2$, the first class of polynomials eligible for the role of reduction polynomial, called ClassCyclo(n), is the set composed of the three cyclotomics of degree n,

- $\Phi_{2 n}(X)=X^{n}+1$, if n is a power of 2
- $\Phi_{\frac{3 n}{2}}(X)=X^{n}+X^{\frac{n}{2}}+1$, if n is even and $\frac{n}{2}=3^{k}$ for $k \in \mathbb{N}$
- $\Phi_{3 n}(X)=X^{n}-X^{\frac{n}{2}}+1$, if n is even $\frac{n}{2}=2^{i}$. 3^{j} for $i, j \in \mathbb{N}$

Proof

Let $m \in \mathbb{N} \backslash\{0\}$.
The roots of $\Phi_{m}(X)$ are exactly the primitive roots m-th of unity

$$
\Phi_{m}(X)=\prod_{\substack{k=1 \\ k \wedge m=1}}^{m}\left(X-\zeta^{k}\right)
$$

For all m, the polynomial $\Phi_{m}(X)$ is irreducible in $\mathbb{Z}[X]$.

To satisfy the reduction properties : a polynomial of degree n must have its second non-zero term of degree lower than $n / 2$.

- $\Phi_{m}(X)$ of degree $n=\varphi(m)$ is self-reciprocal for $m \geq 2$,
i.e. $a_{i}=a_{n-i}$, for $0 \leq i \leq n$.
$>$ for $n \geq 2$, the only ones possible have two terms, one of degree n and one constant, or three, with the middle term of degree $n / 2$.

Bound of rho for ClassCyclo(n) : determinant vs norm

Figure: Graph of the average bound of rho depending on the degree n of $E(X)$ in ClassCyclo(n)

Number of PMNS with a cyclotomic reduction polynomial
Let p prime, $m \geq 3$ such that $\varphi(m)$ is even and $p \equiv 1 \bmod m$.
Then there exists $\varphi(m) \operatorname{PMNS}\left(p, n, \gamma_{i}, \rho\right)_{E(X)}$ with

$$
\begin{aligned}
& \rightarrow n=\varphi(m) \\
& \rightarrow E(X)=\Phi_{m}(X) \\
& \rightarrow \rho \leq\left\lceil 2 p^{1 / \varphi(m)}\right\rceil \\
& \rightarrow \text { and } \gamma_{i} \text { one of the } \varphi(m) \text { distinct roots of } E(X) \text { modulo } p, 0 \leq i<\varphi(m)
\end{aligned}
$$

Proof

The roots ζ of a cyclotomic polynomial $\Phi_{m}(X)$ are of order m.
We write $\operatorname{deg}_{\mathbb{F}_{p}}(\zeta)$ the degree of a root ζ on the field of p elements with p prime.
For every ζ,

$$
\operatorname{deg}_{\mathbb{F}_{p}}(\zeta)=\operatorname{ord}_{(\mathbb{Z} / n \mathbb{Z}) \times}(p) .
$$

As we want

$$
\begin{gathered}
\zeta \in \mathbb{Z} / p \mathbb{Z} \\
\Leftrightarrow \operatorname{deg}_{\mathbb{F}_{p}}(\zeta)=1 \\
\Leftrightarrow \operatorname{crd}_{(\mathbb{Z} / n \mathbb{Z}) \times}(p)=1
\end{gathered}
$$

$$
\begin{gathered}
\zeta \in K \quad \operatorname{ord}(\zeta) \\
\mathbb{F}_{p}(\zeta) \\
\mathbb{F}_{p} \operatorname{deg}_{\mathbb{F}_{p}}(\zeta)
\end{gathered}
$$

The only element of order 1 of a multiplicative group is the neutral element 1.
$>p \equiv 1 \bmod m$.
All roots ζ have the same order, they all have the same degree on \mathbb{F}_{p}.
The roots of $\Phi_{m}(X)$ are the roots of $P(X)=X^{m}-1$, and $P(X)$ and $P^{\prime}(X)=m X^{m-1}$ have no common root, then all the roots of $\Phi_{m}(X)$ are distinct.
> the $\varphi(m)$ distincts roots of $\Phi_{m}(X)$ are in $\mathbb{Z} / p \mathbb{Z}$ if and only if $p \equiv 1 \bmod m$.

Table of the reduction polynomials from which we can generate PMNS bases

$E(X)$	$E(X)$ irreducible in $\mathbb{Z}[x]$	roots of $E(X) \in \mathbb{Z} / p \mathbb{Z}[x]$
$\Phi_{2 n}$	if n is a power of 2 $\Phi_{3 n}^{2}$ $\Phi_{3 n}$	all iff $p \equiv 1 \bmod n^{\prime}$ if $n \equiv 0 \bmod 2$ and $\frac{n}{2}=3^{k}$ where n^{\prime} is the order of the roots

Number of PMNS from ClassCyclo(n)

Let p prime, $n \geq 2$ such that $n=2^{i} 3^{j}$, with $i, j \in \mathbb{N}$.

- If $\nu_{2}(n)>0, \nu_{3}(n)=0$, and $2 n$ divides $p-1$, then there exist n PMNS $\left(p, n, \gamma_{i}, \rho\right)_{E(X)}$ with $E(X)=\Phi_{2 n}(X)=X^{n}+1$ and γ_{i} one of its n distinct roots modulo p.
- If $\nu_{2}(n)=1, \nu_{3}(n) \geq 0$, and $3 n / 2$ divides $p-1$, then there exist n PMNS $\left(p, n, \gamma_{i}, \rho\right)_{E(X)}$ with $E(X)=\Phi_{\frac{3 n}{2}}(X)=X^{n}+X^{\frac{n}{2}}+1$ and γ_{i} one of its n distinct roots modulo p.
- If $\nu_{2}(n) \geq 1, \nu_{3}(n) \geq 0$, and $3 n$ divides $p-1$, then there exist n PMNS $\left(p, n, \gamma_{i}, \rho\right)_{E(X)}$ with $E(X)=\Phi_{3 n}(X)=X^{n}-X^{\frac{n}{2}}+1$ and γ_{i} one of its n distinct roots modulo p.

Example

Construction of 8 PMNS with a cyclotomic reduction polynomial for $p=22273$ and $n=4$

$E(X)$	γ	$\rho_{\min }$
$X^{4}+1$	1254	9
	4991	9
	17282	9
	21019	9
$X^{4}-X^{2}+1$	1355	9
	7512	9
	14761	9
	20918	9

ClassBinomial(n, c)

For a fixed $n \geq 2$, and $c \in \mathbb{Z}$ such that there exists μ prime satisfying

$$
c=q \mu^{k}, \text { with } \operatorname{gcd}(q, \mu)=1 \text { and } \operatorname{gcd}(k, n)=1
$$

the fourth class of polynomials eligible for the role of reduction polynomial, and call ClassBinomial($n, c)$, is the singleton $\left\{X^{n}+c\right\}$.

Proof

Dumas's criterion :
For $P(X)=a_{n} X^{n}+\cdots+a_{1} X+a_{0} \in Z[X]$, if $\exists \mu$ prime such that

1) $\frac{\nu_{\mu}\left(a_{i}\right)}{i}>\frac{\nu_{\mu}\left(a_{n}\right)}{n}$ for $1 \leq i \leq n-1$,
2) $\nu_{\mu}\left(a_{0}\right)=0$,
3) $\operatorname{gcd}\left(\nu_{\mu}\left(a_{n}\right), n\right)=1$,
then $P(X)$ irreducible in $Q[X]$.
We divide $P(X)$ by its leading coefficient a_{n},
$>\nu_{\mu}\left(a_{n} / a_{n}\right)=0$ and $\nu_{\mu}\left(a_{0} / a_{n}\right)=-\nu_{\mu}\left(a_{n}\right)$.

A binomial $P(X)=X^{n}+a_{0}$ respects Dumas's criterion as soon as there exists μ prime such that

$$
\operatorname{gcd}\left(\nu_{\mu}\left(a_{0}\right), n\right)=1
$$

i.e. $P(X)=X^{n}+c \mu^{k}, c \in \mathbb{Z}, \mu$ prime, $\operatorname{gcd}(c, \mu)=1$ and $\operatorname{gcd}(k, n)=1$, where $k=\nu_{\mu}\left(c \mu^{k}\right)$.
Gauss's lemma : $P(X)$ is irreducible over \mathbb{Z}.

Bound of rho for ClassBinomial $(n, c), c=3$: determinant vs norm

Figure: Graph of the average bound of rho depending on the degree n of $E(X)$ in ClassBinomial($n, 3$)

Number of PMNS from ClassBinomial (n, c)

Let p prime, $n \geq 2, c \in \mathbb{Z},|c| \geq 2$, such that there exists a prime μ satisfying

$$
\operatorname{gcd}\left(\nu_{\mu}(c), n\right)=1
$$

Let g a generator of $(\mathbb{Z} / p \mathbb{Z})^{\times}$, and y such that $g^{y} \equiv c \bmod p$ and

$$
\operatorname{gcd}(n, p-1) \mid y
$$

Then there exist $\operatorname{gcd}(n, p-1) \operatorname{PMNS}\left(p, n, \gamma_{i}, \rho\right)_{E(X)}$, with
$\rightarrow E(X)=X^{n}-c$,
$\rightarrow \rho=\left\lceil c p^{1 / n}\right\rceil$
\rightarrow and γ_{i} one of the $\operatorname{gcd}(n, p-1)$ distinct roots of $E(X)$ modulo $p, 0 \leq i<$ $\operatorname{gcd}(n, p-1)$.

Existence

p prime $\Rightarrow \mathbb{Z} / p \mathbb{Z}$ is a field and $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic ;
$\exists \mathrm{g} \in(\mathbb{Z} / p \mathbb{Z})^{\times}$such that $\forall x \in(\mathbb{Z} / p \mathbb{Z})^{\times}, \exists y$ such that $g^{y} \equiv x \bmod p$.
Let $c \in \mathbb{Z},|c| \geq 2$ for wich $\exists \mu$ prime satisfying $\operatorname{gcd}\left(\nu_{\mu}(c), n\right)=1$.
In particular, $\exists y$ tel que

$$
\begin{equation*}
g^{y} \equiv c \quad \bmod p \tag{1}
\end{equation*}
$$

We denote $d=\operatorname{pgcd}(n, p-1)$
Extended Euclidean Theorem : $\exists u$ and v such that:

$$
u n+v(p-1)=d
$$

We assume $d \mid y$, i.e. $\exists m$ such that $y=d m$.

$$
\begin{equation*}
u n m+v(p-1) m=d m=y \tag{2}
\end{equation*}
$$

Existence

We replace (2) in (1)

$$
\begin{aligned}
g^{u n m+v(p-1) m} & \equiv c \quad \bmod p \\
\left(g^{u m}\right)^{n}\left(g^{(p-1)}\right)^{v m} & \equiv c \quad \bmod p
\end{aligned}
$$

Fermat's little theorem : if p is prime, $g^{(p-1)} \equiv 1 \bmod p$, then

$$
\left(g^{u m}\right)^{n} \equiv c \quad \bmod p
$$

$\gamma=g^{u m}$ is a root of $X^{n}-c \bmod p$.

Roots d-th of unity

$d \mid p-1 \Rightarrow p \equiv 1 \bmod d$.
ω_{i} for $1 \leq i \leq d$, the d roots d-th of unity, of order d_{i} dividing d verify

$$
\begin{aligned}
\operatorname{deg}_{\mathbb{F}_{p}}\left(\omega_{i}\right) & =\operatorname{ord}_{\left(\mathbb{Z} / d_{i} \mathbb{Z}\right) \times}(p) \\
& =1
\end{aligned}
$$

Then for $1 \leq i \leq d, \omega_{i} \in \mathbb{F}_{p}$.

Number of roots

γ une racine de $X^{n}-c \bmod p$
For $1 \leq i \leq d$,

$$
\left(w_{i} \gamma\right)^{n}=w_{i}^{n} \gamma^{n} \quad \bmod p
$$

Since $d \mid n$, we obtain

$$
\begin{aligned}
w_{i}^{n} \gamma^{n} & =\left(w_{i}^{d}\right)^{\frac{n}{d}} \gamma^{n} \bmod p \\
& =c \bmod p
\end{aligned}
$$

$\Rightarrow d$ distinct roots $w_{i} \gamma, 1 \leq i \leq d$, of $X^{n}-c$ in $\mathbb{F}_{p} . \square$

Table of the reduction polynomials from which we can generate PMNS bases

$E(X)$	$E(X)$ irreducible in $\mathbb{Z}[x]$	roots of $E(X) \in \mathbb{Z} / p \mathbb{Z}[x]$
$\Phi_{2 n}$ $\Phi_{3 n}$	if n is a power of 2 if $n \equiv 0 \bmod 2$ and $\frac{n}{2}=3^{k}$ if $n \equiv 0 \bmod 2$ and $\frac{n}{2}=2^{i} .3^{j}$	all iff $p \equiv 1 \bmod n^{\prime}$ where n^{\prime} is the order of the roots
$X^{n}+c \mu^{k}, c \in \mathbb{Z}$	$\mu \operatorname{prime,g} \operatorname{gcd}(c, \mu)=1$ and $\operatorname{gcd}(k, n)=1$	1 if $\operatorname{gcd}(n, p-1)=1$ or $\operatorname{gcd}(n, p-1)$ if $\operatorname{gcd}(n, p-1) \mid y$ with $g^{y} \equiv c \bmod p$ where $g \operatorname{generates}(\mathbb{Z} / p \mathbb{Z})^{\prime} \times$

Proposition 1

Let $E(X)=X^{n}-c, c \in \mathbb{Z},|c| \geq 2$, satisfying the Theorem 1 for a prime p, with $\operatorname{gcd}(n, p-1) \left\lvert\, \frac{p-1}{2}\right.$.

Then $E^{\prime}(X)=X^{n}+c$ is also a reduction binomial with respect to p and allows to construct the same number of PMNS.

Proposition 2

Let p prime, $n \geq 2, c \in \mathbb{Z},|c| \geq 2$, such that there exists a prime μ satisfying $\operatorname{gcd}\left(\nu_{\mu}(c), n\right)=1$, and g a generator of $(\mathbb{Z} / p \mathbb{Z})^{\times}$relatively prime to μ.

Then there exist $\operatorname{gcd}(n, p-1) \operatorname{PMNS}\left(p, n, \gamma_{i}, \rho\right)_{E(X)}$, where
$\rightarrow E(X)=X^{n}-c g^{t}$ is the unique reduction binomial with respect to p for t in $[|0, \operatorname{gcd}(n, p-1)-1|]$,
$\rightarrow \rho=\left\lceil c g^{t} p^{1 / n}\right\rceil$
\rightarrow and γ_{i} one of the $\operatorname{gcd}(n, p-1)$ distinct roots of $E(X)$ modulo $p, 0 \leq i<$ $\operatorname{gcd}(n, p-1)$.

Proposition 3

Let p prime, $n \geq 2$ and two reduction polynomials with respect to $p, E(X)=X^{n}-c$ and $E^{\prime}(X)=X^{n}-c^{\prime}$, satisfying $\operatorname{gcd}\left(\nu_{\mu}\left(a_{0}\right), n\right)=1$, and such that at least one prime μ satisfying $\operatorname{gcd}\left(\nu_{\mu}(c), n\right)=1$ is relatively prime to c^{\prime}.

Then there exist $\operatorname{gcd}(n, p-1) \operatorname{PMNS}\left(p, n, \gamma_{i}^{\prime \prime}, \rho\right)_{E^{\prime \prime}}$, with $E^{\prime \prime}(X)=X^{n}-\left(c c^{\prime}\right)$, $\rho=\left\lceil c c^{\prime} p^{1 / n}\right\rceil$ and γ_{i} one of the $\operatorname{gcd}(n, p-1)$ distinct roots of $E^{\prime \prime}(X)$ modulo p, $0 \leq i<\operatorname{gcd}(n, p-1)$.

Example

For the prime $p=317, n=4$. Here $\operatorname{gcd}(n, p-1)=4$.
We set $c=5$, and pick 2 as a generator of $(\mathbb{Z} / 317 \mathbb{Z})^{\times}$and $\operatorname{gcd}(2,5)=1$. From Proposition 2, there exists a unique reduction binomial $E(X)=X^{n}-5 \cdot 2^{t}$ for t in [|0,3|].

The following Tables show the roots of the four polynomials considered for $c=5$, and for $c=-5$.

$\mathrm{P}(\mathrm{X})$ for $c=5$	roots in $\mathbb{Z} / 317 \mathbb{Z}$
$X^{4}-5$	$/$
$X^{4}-5 \cdot 2$	71
	148
	169
	246
$X^{4}-5 \cdot 2^{2}$	$/$
$X^{4}-5 \cdot 2^{3}$	$/$

$\mathrm{P}(\mathrm{X})$ for $c=-5$	roots in $\mathbb{Z} / 317 \mathbb{Z}$
$X^{4}+5$	$/$
$X^{4}+5 \cdot 2$	$/$
$X^{4}+5 \cdot 2^{2}$	$/$
$X^{4}+5 \cdot 2^{3}$	77
	98
	219
	240

ClassTrinomials(n)

For a fixed $n \geq 2$, the second class of polynomials eligible for the role of reduction polynomial, and call ClassTrinomials(n), is the set of trinomials of degree n satisfying the criteria of the Theorem of Ljunggren, described as follow,
if $n=n_{1} d, m=m_{1} d$, with $d=\operatorname{gcd}(n, m), n \leq 2 m$, then the polynomial $X^{n}+\delta X^{m}+\epsilon$, with δ and ϵ equal to ± 1, is irreducible in $\mathbb{Q}[X]$, apart from the three cases :

- n_{1} and m_{1} are both odd
- n_{1} is even and $\epsilon=1$
- m_{1} is even and $\delta=\epsilon$
where $P(X)$ is a product of the polynomial $X^{2 d}+\delta^{m} \epsilon^{n} X^{d}+1$ and a second irreducible polynomial.

Bound of rho for ClassTrinomials(n) : determinant vs norm

Figure: Graph of the average bound of rho depending on the degree n of $E(X)$ in ClassTrinomials(n)

Table of the reduction polynomials from which we can generate PMNS bases

$E(X)$	$E(X)$ irreducible in $\mathbb{Z}[x]$	roots of $E(X) \in \mathbb{Z} / p \mathbb{Z}[x]$
$\begin{aligned} & \Phi_{2 n} \\ & \Phi_{\frac{3 n}{2}} \\ & \Phi_{3 n} \end{aligned}$	if n is a power of 2 if $n \equiv 0 \bmod 2$ and $\frac{n}{2}=3^{k}$ if $n \equiv 0 \bmod 2$ and $\frac{n}{2}=2^{i} \cdot 3^{j}$	all iff $p \equiv 1 \bmod n^{\prime}$ where n^{\prime} is the order of the roots
$X^{n}+c \mu^{k}, c \in \mathbb{Z}$	$\begin{aligned} & \mu \text { prime, } \operatorname{gcd}(c, \mu)=1 \\ & \quad \text { and } \operatorname{gcd}(k, n)=1 \end{aligned}$	$1 \text { if } \operatorname{gcd}(n, p-1)=1$ or $\operatorname{gcd}(n, p-1)$ if $\operatorname{gcd}(n, p-1) \mid y$ with $g^{y} \equiv c \bmod p$ where g generates $(\mathbb{Z} / p \mathbb{Z})^{\times}$
$\begin{gathered} X^{n}+\delta X^{m}+\epsilon \\ \text { with } n \leq 2 m \end{gathered}$ $\delta= \pm 1, \epsilon= \pm 1$ $\begin{gathered} X^{n}+2 X-1 \\ X^{2 m+1}+2 X+1 \\ X^{2 m}-2 X-1 \end{gathered}$	yes, apart from the three cases : $\frac{n}{\operatorname{gcd}(n, m)}{ }_{n}$ and $\frac{m}{\operatorname{gcd}(n, m)}$ are both odd, $\frac{n}{\operatorname{gcd}(n, m)}$ is even and $\epsilon=1$, $\frac{m}{\operatorname{gcd}(n, m)}$ is even and $\delta=\epsilon$. yes	

Example

Construction of 8 PMNS with a reduction trinomial and $\pi=2$

(p, n)	$E(X)$	γ	$\rho_{\min }$
$(22273,3)$	$X^{3}+X+1$	18048	19
	$X^{3}-X+1$	1105	18
		3912	20
		17256	16
	$X^{3}+X-1$	4225	19
	$X^{3}-X-1$	5017	16
		18361	20
		21168	18

ClassQuadrinomials(n)

For a fixed $n \geq 2$, the third class of polynomials eligible for the role of reduction polynomial, and call ClassQuadrinomials(n), is the set of quadrinomials of degree n satisfying the criteria of the Theorem of Ljunggren, described as follow,
let $P(X)=X^{n}+X^{m}+X^{q} \pm 1$, where $n \geq m+\mu$. We set $n=n_{1} d, m=m_{1} d, q=q_{1} d$ and $\left(n_{1}, m_{1}, q_{1}\right)=1$.
If n_{1}, m_{1} and q_{1} are odd integers then $P(X)$ is irreducible over \mathbb{Z}.

Bound of rho for ClassQuadrinomials(n) : determinant vs norm

FigURE: Graph of the average bound of rho depending on the degree n of $E(X)$ in ClassQuadrinomials(n)

Table of the reduction polynomials from which we can generate PMNS bases

$E(X)$	$E(X)$ irreducible in $\mathbb{Z}[x]$	roots of $E(X) \in \mathbb{Z} / p \mathbb{Z}[x]$
$X^{n}+X^{m}+X^{p} \pm 1$ with $n \geq m+p$	$n / \operatorname{gcd}(n, m, p), m / \operatorname{gcd}(n, m, p)$ and $p / \operatorname{gcd}(n, m, p)$ are odd integers	

Lemma 1
Let $P(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} \in \mathbb{C}[X]$, if

$$
\left|a_{k}\right|>1+\left|a_{n-1}\right|+\cdots+\left|a_{k+1}\right|+\left|a_{k-1}\right|+\cdots+\left|a_{0}\right|,
$$

then exactly k roots of $\mathrm{P}(\mathrm{X})$ lie strictly inside the unit circle, i.e. are such that $|r|<1$, and the $n-k$ other roots lie strictly outside the unit circle, i.e. are such that $|r|>1$.

ClassPrimeCst (n, μ)

For a fixed $n \geq 2$, and a prime μ, the fifth class of polynomials eligible for the role of reduction polynomial, and call ClassPrimeCst (n, μ), is the set composed of the polynomials $X^{n}+\sum_{i=1}^{n / 2} \epsilon_{i} X^{i} \pm \mu$, with $\epsilon_{i} \in\{-1,0,1\}$.

Proof

We find a contradiction in the case $k=0$, assuming a_{0} is prime.
If $P(X)$ is reducible in $\mathbb{Z}[X]$, it admits a decomposition of the form

$$
P(X)=X^{n}+a_{n-1} X^{n-1}+\ldots+a_{0}=G(X) H(X)
$$

Since $\left|a_{0}\right|$ is prime, $|G(0)|$ or $|H(0)|$ is equal to 1 , hence we assume $|G(0)|=1$.
As the complex zeros of $G(X)$ satisfy $\prod_{z \mid G(z)=0}|z|=\frac{1}{\mid c(G)} \leq 1$,
$>$ at least one root, suppose z_{0}, is such that $\left|z_{0}\right| \leq 1$.
But $P(X)$ also verifies Lemma 1 for $k=0$,
$>$ all its roots z satisfy $|z|>1$,
which leads to the expected contradiction, then P is irreducible over \mathbb{Z}.

Bound of rho for ClassPrimeCst $(n, \mu), \mu=3$: determinant vs norm

Figure: Graph of the average bound of rho depending on the degree n of $E(X)$ in ClassPrimeCst $(n, 3)$

ClassPerron(n, a_{1})

For a fixed $n \geq 2$, and an integer $a_{1} \in \mathbb{N}$, the sixth class of polynomials eligible for the role of reduction polynomial, and call ClassPerron(n, a_{1}), is the set composed of the polynomials $X^{n}+\sum_{i=2}^{n / 2} \epsilon_{i} X^{i} \pm a_{1} X \pm 1$, with $\epsilon_{i} \in\{-1,0,1\}$.

Proof

We find a contradiction in the case $k=1$, assuming $\left|a_{0}\right|=1$.
If $P(X)$ is reducible in $\mathbb{Z}[X]$, it admits a decomposition of the form

$$
P(X)=X^{n}+a_{n-1} X^{n-1}+\ldots+a_{0}=G(X) H(X)
$$

Here $|G(0)|=|H(0)|=\left|a_{0}\right|=1$.
As the complex zeros of $G(X)$ satisfy $\prod_{z \mid G(z)=0}|z|=\frac{1}{\mid c(G)} \leq 1$ (same with $H(X)$),
$>$ at least one root of $G(X)$ and one root of $H(X)$, suppose $z_{G(X)}$ and $z_{H(X)}$, are such that $\left|z_{G(X)}\right| \leq 1$ and $\left|z_{H(X)}\right| \leq 1$.
But $P(X)$ also verifies Lemma 1 for $k=1$,
$>$ only one of its roots z satisfies $|z| \leq 1$,
which leads to the expected contradiction, then P is irreducible over \mathbb{Z}.

Bound of rho for ClassPerron $\left(n, a_{1}\right), a_{1}=3$: determinant vs norm

Figure: Graph of the average bound of rho depending on the degree n of $E(X)$ in ClassPerron($n, 3$)

Table of the reduction polynomials from which we can generate PMNS bases

$\left.$| $E(X)$ | $E(X)$ irreducible in $\mathbb{Z}[x]$ | roots of $E(X) \in \mathbb{Z} / p \mathbb{Z}[x]$ |
| :---: | :---: | :---: |
| $X^{n}+X^{m}+X^{p} \pm 1$
 with $n \geq m+p$ | $n / \operatorname{gcd}(n, m, p), m / \operatorname{gcd}(n, m, p)$
 and $p / \operatorname{gcd}(n, m, p)$ are odd integers | |
| $X^{n}+a_{k} X^{k}+\cdots+a_{0}$
 with $a_{i} \in \mathbb{Z}, 0 \leq i \leq k$
 and $k \leq \frac{n}{2}$ | $\left\|a_{0}\right\|>1+\left\|a_{n-1}\right\|+\cdots+\left\|a_{1}\right\|$ | |
| and $\left\|a_{0}\right\|$ prime | | |
| or | | |\quad| $\left\|a_{1}\right\|>1+\left\|a_{n-1}\right\|+\cdots+\left\|a_{2}\right\|+\left\|a_{0}\right\|$ |
| :---: |
| and $\left\|a_{0}\right\|=1$ |$\quad \right\rvert\,$

Summary

- Definitions and properties
- The new theorem of PMNS
- Classes of suitable reduction polynomials
- Number of PMNS from the roots of their reduction polynomial modulo p

Number of systems when $E(X)$ is irreducible

Theorem 2:
Let p prime, $\mathrm{n}>2, \mathrm{E}$ a polynomial of degree n and irreducible in $\mathbb{Z}[X]$, and $D(X)=\operatorname{gcd}\left(X^{p}-X, E(X)\right) \bmod p$.

If $D(X)$ is non constant, then $E(X)$ is a reduction polynomial with respect to p and :

- If the discriminant of $D(X)$ is not null, there exists $\operatorname{deg}(D(X))$ PMNS $\left(p, n, \gamma_{i}, \rho \leq\left\lceil p^{1 / n} s\right\rceil\right)_{E(X)}$, where C is the companion matrix of $E(X)$, and $s=\min \left\{\left\|\left(C^{0} C^{1} \cdots C^{n-1}\right)^{T}\right\|_{\infty}, \operatorname{det}\left(\sum_{i=0}^{n-1} C^{i}\left(C^{i}\right)^{T}\right)\right\}$.
- If the discrimiant of $D(X)$ is null, there exists at least one PMNS with the same property.

Proof

Since p is prime, $\mathbb{Z} / p \mathbb{Z}$ is a field.
A root γ of $P(X)$ belongs to $\mathbb{Z} / p \mathbb{Z}$ is also a root $X^{p}-X \bmod p$.

The number of roots of $P(X)$ in $\mathbb{Z} / p \mathbb{Z}$

$$
\operatorname{deg}(D(X)) \text { with } D(X)=\operatorname{gcd}\left(X^{p}-X, P(X)\right) \bmod p, D(X) \text { non constant. }
$$

We denote Nr_{p} the number of roots of $P(X)$ modulo p.
Two cases :
\rightarrow The discriminant of $D(X)$ is not null, $D(X)$ is separable, i.e. it has no multiple root.
$>\operatorname{Nr}_{p}=\operatorname{deg}(D(X))$.
\rightarrow The discriminant of $D(X)$ is null, $D(X)$ has at least one multiple root

$$
>1 \leq N r P_{p}<\operatorname{deg}(D(X))
$$

If $P(X)$ is irreducible in $\mathbb{Z}[X]$, from Theorem 1 the result is proved.

Example

We choose a prime $p=57896044618658097711785492504343953926$ 634992332820282019728792003956566811073 on 256 bits,
$n=8$, and we fix $\|E(X)\|_{\infty} \leq 7$.
Classes are given with the corresponding minimum number of PMNS we can reach from them.

ClassCyclo(n) : at least 8 systems	ClassTrinomials(n) : at least 24 systems
ClassQuadrinomials(n) : no system	ClassBinomials(n, 3) : no system
ClassBinomials(n, 4) : no system	ClassBinomials(n, 5) : no system
ClassBinomials($\mathrm{n}, 6)$: at least 16 systems	ClassBinomials(n, 7) : no system
ClassPrimeCst($\mathrm{n}, 3$) : at least 6 systems	ClassPrimeCst($\mathrm{n}, 5$) : at least 158 systems
ClassPrimeCst($\mathrm{n}, 7)$: at least 190 systems	ClassPerron($\mathrm{n}, 3$) : at least 8 systems
ClassPerron($\mathrm{n}, 4)$: at least 38 systems	ClassPerron($\mathrm{n}, 5$) : at least 78 systems
ClassPerron(n, 6) : at least 104 systems	ClassPerron(n, 7) : at least 112 systems

> There are at least 742 systems in total.

Table of the reduction polynomials from which we can generate PMNS bases

$E(X)$	$E(X)$ irreducible in $\mathbb{Z}[x]$	roots of $E(X) \in \mathbb{Z} / p \mathbb{Z}[x]$
$\begin{gathered} \Phi_{2 n} \\ \Phi_{\frac{3 n}{2}} \\ \Phi_{3 n} \end{gathered}$	if n is a power of 2 if $n \equiv 0 \bmod 2$ and $\frac{n}{2}=3^{k}$ if $n \equiv 0 \bmod 2$ and $\frac{n}{2}=2^{i}$. 3^{j}	all iff $p \equiv 1 \bmod n^{\prime}$ where n^{\prime} is the order of the roots
$X^{n}+c \mu^{k}, c \in \mathbb{Z}$	$\begin{aligned} & \mu \text { prime, } \operatorname{gcd}(c, \mu)=1 \\ & \quad \text { and } \operatorname{gcd}(k, n)=1 \end{aligned}$	1 if $\operatorname{gcd}(n, p-1)=1$ or $\operatorname{gcd}(n, p-1)$ if $\operatorname{gcd}(n, p-1) \mid y$ with $g^{y} \equiv c \bmod p$ where g generates $(\mathbb{Z} / p \mathbb{Z})^{\times}$
$\begin{gathered} X^{n}+\delta X^{m}+\epsilon \\ \text { with } n \leq 2 m \\ \delta= \pm 1, \epsilon= \pm 1 \\ \\ X^{n}+2 X-1 \\ X^{2 m+1}+2 X+1 \\ X^{2 m}-2 X-1 \end{gathered}$	yes, apart from the three cases : $\frac{n}{\operatorname{gcd}(n, m)}$ and $\frac{m}{\operatorname{gcd}(n, m)}$ are both odd, $\frac{n}{\operatorname{gcd}(n, m)}$ is even and $\epsilon=1$, $\frac{m}{\operatorname{gcd}(n, m)}$ is even and $\delta=\epsilon$.	$\begin{gathered} \leq \operatorname{deg}\left(\operatorname{gcd}\left(X^{p}-X, E(X)\right) \bmod p\right) \\ O\left(\frac{\log p}{\log \log p}\right) \text { when } p \rightarrow+\infty \end{gathered}$

Table of the reduction polynomials from which we can generate PMNS bases

$\left.$| $E(X)$ | $E(X)$ irreducible in $\mathbb{Z}[x]$ | roots of $E(X) \in \mathbb{Z} / p \mathbb{Z}[x]$ |
| :---: | :---: | :---: |
| $X^{n}+X^{m}+X^{p} \pm 1$
 with $n \geq m+p$ | $n / \operatorname{gcd}(n, m, p), m / \operatorname{gcd}(n, m, p)$
 and $p / \operatorname{gcd}(n, m, p)$ are odd integers | |
| $X^{n}+a_{k} X^{k}+\cdots+a_{0}$
 with $a_{i} \in \mathbb{Z}, 0 \leq i \leq k$
 and $k \leq \frac{n}{2}$ | $\left\|a_{0}\right\|>1+\left\|a_{n-1}\right\|+\cdots+\left\|a_{1}\right\|$
 and $\left\|a_{0}\right\|$ prime
 or | $\leq \operatorname{deg}\left(\operatorname{gcd}\left(X^{p}-X, E(X)\right) \bmod p\right)$ |
| $\left\|a_{1}\right\|>1+\left\|a_{n-1}\right\|+\cdots+\left\|a_{2}\right\|+\left\|a_{0}\right\|$ | | |
| and $\left\|a_{0}\right\|=1$ | | |$\quad \right\rvert\,$

Change of the radix γ

$>\mathfrak{B}_{1}=(p=31, n=3, \gamma=3, \rho=4)$

0	1	2	3	4	5	6	7	8	9
$(0,0,0)$	$(0,0,1)$	$(0,0,2)$	$(0,0,3)$	$(0,1,1)$	$(0,1,2)$	$(0,1,3)$	$(0,2,1)$	$(0,2,2)$	$(0,2,3)$
$(3,1,1)$	$(3,1,2)$	$(3,1,3)$	$(0,1,0)$	$(3,2,2)$	$(3,2,3)$	$(0,2,0)$	$(3,3,2)$	$(3,3,3)$	$(0,3,0)$
		$(3,2,0)$	$(3,2,1)$		$(3,3,0)$	$(3,3,1)$			$(1,0,0)$
10	11	12	13	14	15	16	17	18	19
$(0,3,1)$	$(0,3,2)$	$(0,3,3)$	$(1,1,1)$	$(1,1,2)$	$(1,1,3)$	$(1,2,1)$	$(1,2,2)$	$(1,2,3)$	$(1,3,1)$
$(1,0,1)$	$(1,0,2)$	$(1,0,3)$			$(1,2,0)$			$(1,3,0)$	$(2,0,1)$
		$(1,1,0)$						$(2,0,0)$	
20	21	22	23	24	25	26	27	28	29
$(1,3,2)$	$(1,3,3)$	$(2,1,1)$	$(2,1,2)$	$(2,1,3)$	$(2,2,1)$	$(2,2,2)$	$(2,2,3)$	$(2,3,1)$	$(2,3,2)$
$(2,0,2)$	$(2,0,3)$			$(2,2,0)$			$(2,3,0)$	$(3,0,1)$	$(3,0,2)$
	$(2,1,0)$						$(3,0,0)$		

30
$(2,3,3)$
$(3,0,3)$
$(3,1,0)$

$>\mathfrak{B}_{2}=(p=31, n=3, \gamma=4, \rho=4)$

0	1	2	3	4	5	6	7	8	9
$(0,0,0)$	$(0,0,1)$	$(0,0,2)$	$(0,0,3)$	$(0,1,0)$	$(0,1,1)$	$(0,1,2)$	$(0,1,3)$	$(0,2,0)$	$(0,2,1)$
$(1,3,3)$	$(2,0,0)$	$(2,0,1)$	$(2,0,2)$	$(2,0,3)$	$(2,1,0)$	$(2,1,1)$	$(2,1,2)$	$(2,1,3)$	$(2,2,0)$
$(3,3,2)$	$(3,3,3)$								
10	11	12	13	14	15	16	17	18	19
$(0,2,2)$	$(0,2,3)$	$(0,3,0)$	$(0,3,1)$	$(0,3,2)$	$(0,3,3)$	$(1,0,0)$	$(1,0,1)$	$(1,0,2)$	$(1,0,3)$
$(2,2,1)$	$(2,2,2)$	$(2,2,3)$	$(2,3,0)$	$(2,3,1)$	$(2,3,2)$	$(2,3,3)$	$(3,0,0)$	$(3,0,1)$	$(3,0,2)$
20	21	22	23	24	25	26	27	28	29
$(1,1,0)$	$(1,1,1)$	$(1,1,2)$	$(1,1,3)$	$(1,2,0)$	$(1,2,1)$	$(1,2,2)$	$(1,2,3)$	$(1,3,0)$	$(1,3,1)$
$(3,0,3)$	$(3,1,0)$	$(3,1,1)$	$(3,1,2)$	$(3,1,3)$	$(3,2,0)$	$(3,2,1)$	$(3,2,2)$	$(3,2,3)$	$(3,3,0)$
30									

Change of the radix γ

$$
\mathfrak{B}_{3}=(p=31, n=3, \gamma=11, \rho=4)
$$

0	1	2	3	4	5	6	7	8	9
$(0,0,0)$	$(0,0,1)$	$(0,0,2)$	$(0,0,3)$	$(0,3,2)$	$(0,3,3)$	$(2,1,1)$	$(2,1,2)$	$(1,1,0)$	$(1,1,1)$
$(1,0,3)$	$(1,3,2)$	$(0,3,0)$	$(0,3,1)$	$(3,1,2)$	$(2,1,0)$			$(2,1,3)$	
$(1,3,1)$		$(1,3,3)$	$(3,1,1)$		$(3,1,3)$				
10	11	12	13	14	15	16	17	18	19
$(1,1,2)$	$(0,1,0)$	$(0,1,1)$	$(0,1,2)$	$(0,1,3)$	$(3,2,2)$	$(2,2,0)$	$(2,2,1)$	$(2,2,2)$	$(1,2,0)$
	$(1,1,3)$		$(3,2,0)$	$(3,2,1)$		$(3,2,3)$			$(2,2,3)$
20	21	22	23	24	25	26	27	28	29
$(1,2,1)$	$(1,2,2)$	$(0,2,0)$	$(0,2,1)$	$(0,2,2)$	$(0,2,3)$	$(2,0,1)$	$(2,0,2)$	$(1,0,0)$	$(1,0,1)$
		$(1,2,3)$	$(3,0,1)$	$(3,0,2)$	$(2,0,0)$	$(3,3,2)$	$(2,3,0)$	$(2,0,3)$	$(2,3,2)$
		$(3,0,0)$		$(3,3,0)$	$(3,0,3)$		$(3,3,3)$	$(2,3,1)$	

$>\mathfrak{B}_{4}=(p=31, n=3, \gamma=17, \rho=4)$

0	1	2	3	4	5	6	7	8	9
(0, 0, 0)	(0, 0, 1)	(0,0,2)	(0,0,3)	(0,2,1)	(0,2,2)	$(0,2,3)$	$(2,1,1)$	$(2,1,2)$	(2, 1, 3)
$(1,3,1)$	$(1,3,2)$	$(1,3,3)$	(0, 2, 0)	$(3,2,2)$	$(3,2,3)$	$(2,1,0)$			(2, 3, 0)
$(3,0,1)$	$(3,0,2)$	$\begin{aligned} & (3,0,3) \\ & (3,2,0) \end{aligned}$	$(3,2,1)$						
10	11	12	13	14	15	16	17	18	19
(1,0,0)	(1, 0, 1)	$(1,0,2)$	(1, 0, 3)	$(1,2,1)$	(1,2,2)	$(1,2,3)$	(0, 1, 0)	(0, 1, 1)	(0,1, 2)
$(2,3,1)$	$(2,3,2)$	$(2,3,3)$	$(1,2,0)$			$(3,1,0)$	$(3,1,1)$	$(3,1,2)$	$\begin{aligned} & (3,1,3) \\ & (3,3,0) \end{aligned}$
20	21	22	23	24	25	26	27	28	29
(0, 1, 3)	(0,3, 1)	(0,3,2)	(0,3,3)	$(2,2,1)$	(2, 2, 2)	$(2,2,3)$	(1, 1, 0)	(1, 1, 1)	(1, 1, 2)
(0,3, 0)	$(2,0,1)$	$(2,0,2)$	$(2,0,3)$						
$(2,0,0)$	$(3,3,2)$	$(3,3,3)$	$(2,2,0)$						
$(3,3,1)$									
30									
(1, 1, 3)									
$(1,3,0)$									
$(3,0,0)$									

